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An adaptive multi-alphabet arithmetic coding
based on generalized virtual sliding window

Evgeny Belyaev, Søren Forchhammer and Kai Liu

Abstract—We propose a novel efficient multi-alphabet
multiplication-free adaptive arithmetic coder. First, we generalize
probability estimation via virtual sliding window for the multi-
alphabet case and show that it does not require multiplications
and provides a trade-off between the probability adaptation
speed and the precision of the probability estimation. Second, we
show how the generalized virtual sliding window can be used to
eliminate multiplications and divisions. Finally, we demonstrate
that the proposed arithmetic coder provides better compression
performance than existing implementations based on state-of-the-
art multiplication-free binary arithmetic coders.

Index Terms—multi-alphabet arithmetic coding, probability
estimation

I. INTRODUCTION

A daptive multi-alphabet arithmetic coding is a key com-
ponent of many data compression algorithms. The well-

known integer implementation of the arithmetic coding, pro-
posed by Witten et al. [16], requires multiplications and
divisions. This makes it difficult to use the coder, especially
in hardware. Therefore, the vast majority of existing im-
plementations represent non-binary data as a set of binary
symbols (called binarization) and compress them using context
modeling and a multiplication-free adaptive binary arithmetic
coding [1], [2], [3], [4], [5], [6], [7]. However, this approach
can provide less compression performance comparing to multi-
alphabet arithmetic coding [1].

In this letter, we present a novel efficient multi-alphabet
multiplication-free adaptive arithmetic coder. The main con-
tributions of the letter are the following:

1) We generalize the probability estimation via virtual
sliding window [11] into multi-alphabet case and show
that it does not require multiplications and provides a
trade-off between the probability adaptation speed and
the precision of the probability estimation.

2) We show how the generalized virtual sliding window
can be used to eliminate multiplications and divisions.

3) We demonstrate that the proposed arithmetic coder
provides better compression performance comparing to
implementations based on binary arithmetic coders from
JPEG2000, H.264/AVC and H.265/HEVC standards.
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The rest of the letter is organized as follows. Section II
reviews multi-alphabet arithmetic coding and its integer im-
plementation. Section III introduces the proposed arithmetic
coding implementation. Performance evaluation and conclu-
sions are drawn in Sections IV and V.

II. ARITHMETIC CODING AND ITS IMPLEMENTATION

A. General description
Let us consider a discrete stationary memoryless source

generating letters xN = {x1, x2, ..., xN} from alphabet
a = {a1, ..., aM} with probabilities p(a1), ..., p(aM ). In
arithmetic coding, a codeword for xN is represented as
the first

⌈
− log2 p(xN ) + 1

⌉
bits in binary representation of

q(xN )+p(xN )/2, where p(xN ) is the probability of xN written
as

p(xN ) =

N∏
i=1

p(xi), (1)

and q(xN ) is cumulative probability of xN written as

q(xN ) =
∑

yN≺xN

p(yN ), (2)

where yN ≺ xN means that sequence yN is preceding xN in
lexicographic order. Both p(xN ) and q(xN ) can be calculated
using the following iterative equations:{

p(xi) = p(xi−1)p(xi),
q(xi) = q(xi−1) + p(xi−1)q(xi),

(3)

where p(x0) = 1, q(x0) = 0 and q(xi) is the cumulative
probability of letter xi.

Let us define f̂(xN ) as a value of the first⌈
− log2 p(xN ) + 1

⌉
bits in binary representation of

q(xN ) + p(xN )/2. Then the arithmetic decoder iteratively
determines the decoded letter as xi = aj , where j is the
minimum possible value satisfying

p(xi−1)q(aj) + q(xi−1) ≥ f̂(xN ). (4)

B. Integer implementation of encoder
In case of adaptive coding, probabilities p(a1),...,p(aM )

are unknown and should be estimated [9]. Let us consider
the scaled counters algorithm [16], where the probability is
estimated as p̂(ak) = Ck

C , where Ck is counter of letter ak and
C =

∑M
m=1 Cm. In order to avoid the counters overflowing,

when C exceeds Cmax the counters are reduced two times
(scaled). Finally, registers Q1, ..., QM are used to calculate
the cumulative probabilities (see Algorithm 1)1.

1In this letter we use ”←” as the assignment operation, ”�” and ”�” as
left and right arithmetic shift.
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Algorithm 1 : Probability estimation procedure
1: k ← j, where j satisfies aj = xi.
2: Ck ← Ck + 1
3: C ← C + 1
4: if C > Cmax then
5: C ← 0
6: for m = 1, ...,M do
7: Cm ← max{1, bCm/2c}
8: C ← C + Cm

9: end for
10: end if
11: Q1 ← 0
12: for m = 2, ...,M do
13: Qm ← Qm−1 + Cm−1
14: end for

An integer implementation of an arithmetic encoder engine
is based on two registers: L and R of size b bits. Register L
corresponds to q(xi) and register R corresponds to p(xi). The
precision required to represent registers L and R grows with
increasing of N . In order to decrease the coding latency and
avoid register underflow, the renormalization procedure [16]
is used for each output symbol (see Algorithm 2). Here
procedures WriteZeros(z) and WriteOnes(z) write z zeros or
ones into the output bit stream, respectively.

Algorithm 2 : Encoder renormalization procedure
1: while R < 2b−2 do
2: if L ≥ 2b−1 then
3: WriteOnes(1)
4: WriteZeros(bits to follow), bits to follow ← 0
5: L ← L − 2b−1

6: else if L < 2b−2 then
7: WriteZeros(1)
8: WriteOnes(bits to follow), bits to follow ← 0
9: else

10: bits to follow ← bits to follow + 1
11: L ← L − 2b−2

12: end if
13: L ← L� 1, R ← R� 1
14: end while

Finally, an integer implementation of arithmetic encoding
is given by Algorithm 3. Notice, a file header containing a
number of encoded symbols is used for correct bit stream
termination at the decoder side.

Algorithm 3 : Symbol xi encoding procedure
1: k ← j, where j satisfies aj = xi.

2: L← L+

⌊
RQk

C

⌋
3: R←

⌊
RCk

C

⌋
4: call Probability estimation procedure via Algorithm 1
5: call Encoder renormalization procedure via Algorithm 2

C. Integer implementation of decoder

An integer implementation of an arithmetic decoder engine
utilizes additional register F corresponding to f(xN ). Register
F consists of b bits which are enough to determine the decoded
letter xi in (4), and updated in the renormalization procedure
given by Algorithm 4. Here procedure ReadBit() reads one
bit from the bit stream.

Algorithm 4 : Decoder renormalization procedure
1: while R < 2b−2 do
2: if L ≥ 2b−1 then
3: L← L− 2b−1

4: F ← F − 2b−1

5: else if L ≥ 2b−2 then
6: L← L− 2b−2

7: F ← F − 2b−2

8: end if
9: L ← L� 1, R ← R� 1

10: F ← (F � 1) +ReadBit()
11: end while

An integer implementation of arithmetic decoding is given
by Algorithm 5. Here the probability estimation procedure and
update for registers L and R are the same as for the encoder.
For more details towards to the implementation see [16].

Algorithm 5 : Symbol xi decoding procedure

1: Q ←
⌊

(F − L+ 1)C − 1

R

⌋
2: for m = 1, ...,M do
3: if Qm > Q then break
4: xi ← am
5: end for
6: k ← j, where j satisfies aj = xi.

7: L← L+

⌊
RQk

C

⌋
8: R←

⌊
RCk

C

⌋
9: call Probability estimation procedure via Algorithm 1

10: call Decoder renormalization procedure via Algorithm 4

III. PROPOSED ARITHMETIC CODING

A. Probability estimation via virtual sliding window

In [11], [12] a probability estimation for a binary source
based on virtual sliding window was proposed. In this al-
gorithm the probability that symbol xi is equal to one is
estimated as

p̂(1) =
S

22W
, (5)

where S is the window state updated by the following rule:

S ←


S +

⌊
22W − S + 2W−1

2W

⌋
, if xi = 1.

S −
⌊
S + 2W−1

2W

⌋
, if xi = 0,

(6)

where 2W is the window length, and 22W is the maximum
possible value of state S. Notice that division by 2W can be
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implemented via right arithmetic shift, i.e.,
⌊
x/2W

⌋
is equal

to x�W .
In this letter we propose to generalize this probability

estimation approach to a multi-alphabet case in the following
way. Let us utilize M virtual sliding windows, where window
m ∈ {1, ..,M} estimates the probabilities of two possibilities:
next symbol xi = am or next symbol xi 6= am. Then the
probability that xi = am is estimated as

p̂(am) =
Sm

M22W
, (7)

where states S1, ..., SM are updated in two steps. At the first
step, all states of windows which are not related with the
current symbol xi are updated as

Sm ← Sm −
⌊
Sm + 2W−1

2W

⌋
, for ∀m : am 6= xi, (8)

and at the second step the state related with the current
symbol xi is updated as

Sm ←M22W −
M∑

k=1,k 6=m

Sk, for m : am = xi. (9)

Utilizing (8) and (9) the proposed probability estimation
procedure is given by Algorithm 6. Here the initial states
correspond to equal probabilities for all symbols, i.e., S1 =
... =SM = 22W .

Algorithm 6 : Probability estimation procedure
1: k ← j, where j satisfies aj = xi.
2: for m = 1, ...,M do
3: Sm ← Sm − (Sm + 2W−1)�W
4: end for
5: Sk ←M22W −

∑M
m=1 Sm + Sk

6: Q1 ← 0
7: for m = 2, ...,M do
8: Qm ← Qm−1 + Sm−1
9: end for

Algorithm 6 does not use multiplications, divisions or
conditional operations. A trade-off between the probability
adaptation speed and the precision of the probability estima-
tion can be easily achieved by selecting a specific W .

B. Multiplication-free encoder and decoder
After renormalization in Algorithm 2 and Algorithm 4,

register R satisfies the following inequality [13]:
1

2
2b−1 ≤ R < 2b−1. (10)

From (10) it follows that a multiplication R × p̂(am) can
be approximated in the following way:

R× p̂(am) ≈ α2b−1 × p̂(am) = α2b−1 × Sm

M22W
, (11)

where α ∈ [(1/2), ...1). Let us quantize the interval
[ 122b−1, 2b−1) into 2K sub-intervals. Then the sub-interval
index is determined as

∆ =

⌊
R− 2b−2

2b−2−K

⌋
, (12)

and multiplication (11) is approximated as

R× p̂(am) ≈
(
2b−2 + ∆2b−2−K

)
× Sm

M22W
. (13)

Let us assume that the number of letters in alphabet a is a
power of two, i.e., M = 2d. Then if the registers size is

b = 2W + d+ 2, (14)

then (13) is rewritten as

R× p̂(am) ≈ Sm +

⌊
∆× Sm

2K

⌋
. (15)

From (14) follows that for 32-bit arithmetic and alphabet
size of M = 256 the window length 2W should not ex-
ceed 211. Repeating the reasoning described above, a mul-
tiplication R× q̂(am) is approximated as

R× q̂(am) ≈ Qm +

⌊
∆×Qm

2K

⌋
. (16)

Thus, the proposed implementation of arithmetic encoding
is given by Algorithm 7.

Algorithm 7 : Symbol xi encoding procedure
1: k ← j, where j satisfies aj = xi.
2: ∆← (R− 2b−2)� (b− 2−K)
3: L← L+Qk + (∆×Qk)� K
4: R← Sk + (∆× Sk)� K
5: call Probability estimation procedure via Algorithm 6
6: call Encoder renormalization procedure via Algorithm 2

The corresponding arithmetic decoding is given by Algo-
rithm 8.

Algorithm 8 : Symbol xi decoding procedure

1: ∆← (R− 2b−2)� (b− 2−K)
2: for m = 1, ...,M do
3: Q ← Qm + (∆×Qm)� K
4: if Q > F − L then break
5: xi ← am
6: end for
7: k ← j, where j satisfies aj = xi.
8: L← L+Qk + (∆×Qk)� K
9: R← Sk + (∆× Sk)� K

10: call Probability estimation procedure via Algorithm 6
11: call Decoder renormalization procedure via Algorithm 4

One can see that the proposed implementation does not
require divisions. Moreover, if K is small, then multiplications
∆× Sk and ∆×Qk can be replaced by conditional, addition
and shift operations. For example, if K = 2 then ∆ can be 0,
1, 2 or 3 and ∆×Sk is equal to 0, Sk, Sk � 1 or Sk � 1+Sk,
respectively.

Thus, the proposed approach provides multiplication-free
implementation with a trade-off between implementation cost
and compression efficiency by selecting a specific K. On
one hand this is attractive for hardware implementations. On
the other hand, for a given K, software implementations
could apply the multiplication directly keeping bit stream
compatibility with multiplication-free implementations.
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TABLE I
COMPRESSION RATE FOR DIFFERENT AC IMPLEMENTATIONS FOR LARGE CALGARY CORPUS [14] DATA SET, BITS PER SYMBOL

File
name

Witten
and
Cleary [16]

Unary bina-
rization and
M-coder

Unary bina-
rization and
MQ-coder

Tree
binarization
and M-coder

Tree binariza-
tion and MQ-
coder

Proposed 1,
K = 8

Proposed 2,
K = 8

Proposed 2,
K = 5

Proposed 2,
K = 3

Proposed 2,
K = 1

BIB 5.24 6.98 5.59 5.49 5.39 5.24 5.27 5.28 5.33 5.53
BOOK1 4.55 6.83 4.81 4.76 4.69 4.54 4.57 4.58 4.63 4.84
BOOK2 4.78 6.88 4.96 4.90 4.81 4.71 4.72 4.73 4.78 4.96
GEO 5.67 6.89 6.00 5.78 5.65 5.68 5.82 5.83 5.88 6.04
NEWS 5.19 6.86 5.32 5.24 5.15 5.12 5.12 5.13 5.18 5.37
OBJ1 5.98 6.90 5.59 5.51 5.43 5.59 5.59 5.60 5.65 5.85
OBJ2 6.08 7.47 6.09 5.95 5.84 5.86 5.86 5.87 5.92 6.11
PAPER1 4.99 6.94 5.17 5.07 5.00 4.90 4.90 4.91 4.96 5.15
PAPER2 4.63 6.93 4.92 4.83 4.76 4.62 4.63 4.65 4.69 4.88
PAPER3 4.71 6.98 4.99 4.91 4.84 4.71 4.71 4.72 4.77 4.95
PAPER4 4.82 7.02 5.08 4.94 4.93 4.75 4.75 4.76 4.81 5.00
PAPER5 5.06 7.01 5.26 5.14 5.13 4.94 4.95 4.96 5.01 5.21
PAPER6 5.01 6.79 5.05 4.99 4.94 4.83 4.83 4.84 4.89 5.09
PIC 1.17 1.44 1.00 1.03 1.10 1.08 1.08 1.09 1.15 1.46
PROGC 5.24 6.73 5.36 5.29 5.24 5.14 5.14 5.15 5.20 5.40
PROGL 4.76 6.36 4.75 4.70 4.66 4.63 4.64 4.65 4.70 4.90
PROGP 4.90 6.41 4.96 4.88 4.86 4.76 4.76 4.77 4.82 5.01
TRANS 5.50 6.54 5.44 5.38 5.30 5.30 5.31 5.32 5.37 5.57
Average 0.0% +33.9% +1.8% +0.3% -0.7% -2.3% -2.0% -1.7% -0.5% +4.5%

TABLE II
COMPRESSION RATE FOR DIFFERENT AC IMPLEMENTATIONS FOR THE LARGE CORPUS [15] DATA SET, BITS PER SYMBOL

File
name

Witten
and
Cleary [16]

Unary bina-
rization and
M-coder

Unary bina-
rization and
MQ-coder

Tree
binarization
and M-coder

Tree binariza-
tion and MQ-
coder

Proposed 1,
K = 8

Proposed 2,
K = 8

Proposed 2,
K = 5

Proposed 2,
K = 3

Proposed 2,
K = 1

bible.txt 4.35 5.87 6.69 4.54 4.50 4.33 4.36 4.37 4.42 4.61
world192 5.00 6.31 6.73 5.14 5.07 4.96 4.97 4.98 5.03 5.24
E.coli 2.03 3.73 5.00 2.07 2.20 2.00 2.00 2.01 2.06 2.24
Average 0.0% +48.2% +78.2% +3.0% +4.4% -1.0% -0.7% -0.3% +1.2% +7.0%

TABLE III
AN AVERAGE NUMBER OF HARDWARE-CRITICAL OPERATIONS PER

SYMBOL NEEDED FOR ENCODING AND DECODING

Operation Witten and
Cleary [16]

Unary binarization
and M/MQ-coder

Tree binarization
and M/MQ-coder

Proposed 2

Multip. 5 0 0 0
Division 5 0 0 0
Renorm. 2 186 16 2

IV. PERFORMANCE EVALUATION

For comparisons, we used multi-alphabet adaptive arith-
metic coding implementation described in Section II. This im-
plementation is a slightly modified version of arithmetic cod-
ing from [16]. We also compare the proposed coder with four
multi-alphabet adaptive arithmetic coding based on adaptive
binary arithmetic coding. As an adaptive arithmetic coding en-
gine we used two state-of-the-art multiplication-free adaptive
binary arithmetic coders: MQ-coder from JPEG2000 image
coding standard [8] and M-coder [10] from H.264/AVC [6]
and H.265/HEVC [7] video coding standards. For representing
non-binary data into binary format we applied unary binariza-
tion as in standards [6], [7] and tree binarization introduced
in [1]. The proposed coder was realized in two versions. The
first version, denoted as Proposed 1, is the case, when the best
window length was selected from set 2W = {26, 27, ..., 211}
for each file, while Proposed 2 utilizes W = 9 for all files.

The compression performance has been evaluated utilizing
two data sets: Large Calgary Corpus [14] (see Table I) and The
Large Corpus [15] (see Table II). The first data set consist of
files with different statistical properties and lengths, while the
second one is used for testing of compression for files with
large size. Here we use the coder from [16] as reference coder

and compare it with the multiplication-free implementations2.
The presented results shows that:

1) Proposed 1 and Proposed 2 with K = 8 provide the
best average results among considered coders. Herewith,
Proposed 1 outperforms Proposed 2 with the price of
multiple encoding with different window lengths, i.e., it
can be used to achieve the maximum compression ratio
at high performance platforms.

2) Decreasing the precision of the multiplication approxi-
mation reduces the compression performance. However,
the precision with K = 3 is enough to provide better
results than both M-coder and MQ-coder for The Large
Corpus (+3.0% and +4.4% versus +1.2%) and better or
comparable results for Large Calgary Corpus (+0.3%
and -0.7% versus -0.5%).

Table III shows an average number of hardware-critical
operations, such as multiplications and divisions, needed for
encoding and decoding obtained for The Large Corpus data
set. We also included renormalizations, since the number of
loops within it is not determined and depends on register R.
One can see that Proposed 2 requires less renormalizations
than other multiplication-free coders.

V. CONCLUSION

In this letter we presented an adaptive multiplication-free
arithmetic coder which is preferable when comparing to the
existing multiplication-free implementations based on adaptive
binary arithmetic coding. The future research will be related to
hardware implementation of the proposed arithmetic coding.

2In Tables I and II, an average gain with sign ’-’ means that a considered
coder provides better results than the reference one
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